Constrained least-squares optimization for robust estimation of center of rotation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constrained least-squares optimization for robust estimation of center of rotation.

This paper presents a new direct method for estimating the average center of rotation (CoR). An existing least-squares (LS) solution has been shown by previous works to have reduced accuracy for data with small range of motion (RoM). Alternative methods proposed to improve the CoR estimation use iterative algorithms. However, in this paper we show that with a carefully chosen normalization sche...

متن کامل

Peak-constrained least-squares optimization

We presented the basic concepts for peakconstrained least-squares (PCLS) optimization in previous papers. We present advanced PCLS optimization concepts in this paper.

متن کامل

Constrained Least-Squares Density-Difference Estimation

We address the problem of estimating the difference between two probability densities. A naive approach is a two-step procedure that first estimates two densities separately and then computes their difference. However, such a two-step procedure does not necessarily work well because the first step is performed without regard to the second step and thus a small error in the first stage can cause...

متن کامل

Robust Estimation Using Least Trimmed Squares

A robust procedure is proposed, starting from least trimmed squares as the initial estimator. The asymptotic distribution of the two-step and multi-step estimators is derived. This allows the use with a pre-specified efficiency under normality. It is argued that the good performance, together with the simplicity of the procedure, should make this the robust estimator of choice for applied work.

متن کامل

The Randomized Ellipsoid Algorithm for Constrained Robust Least Squares Problems

In this chapter a randomized ellipsoid algorithm is described that can be used for finding solutions to robust Linear Matrix Inequality (LMI) problems. The iterative algorithm enjoys the property that the convergence speed is independent on the number of uncertain parameters. Other advantages, as compared to the deterministic algorithms, are that the uncertain parameters can enter the LMIs in a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Biomechanics

سال: 2007

ISSN: 0021-9290

DOI: 10.1016/j.jbiomech.2006.05.010